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Ingegneria Chimica Universitá di Roma ‘La Sapienza’, via Eudossiana 18, 00184 Roma, Italy

Received 2 October 1996, in final form 21 February 1997

Abstract. By applying the definition of Markov operator for iterated function systems with
probability, an analytic expression for the structure factor and for the moment-generating function
of a class of fractal sets is obtained in the presence of arbitrary multifractal distributions
associated with affine iterated function systems. The properties of the structure factor of fractal
sets are analysed in detail. The results developed for the structure factors have interesting
implications as regards to the theory of Laplace transforms of singular non-atomic measures.
Some physical applications of the theory, related to fractal and heterogeneous systems in the
case of adsorption and relaxation, are briefly addressed. Integral transform theory is also applied
to solve the Dirichlet problem for the Laplace equation on the circle in the presence of singular
non-atomic boundary conditions.

1. Introduction

The analysis of the structure factor of fractal objects has important implications in the
theory of diffraction and scattering [1, 2]. Scattering experiments are a powerful tool for
analysing the fractal properties of aggregates, aerogels [3–5], suspensions [6, 7] and the
surface structure of porous materials [8].

By applying renormalization to density, a recursive relation for the structure factor of
n-order prefractals can be obtained [2, 9] for many fractal structures. For finitely ramified
structures, the structure factor can easily be obtained by renormalization, in much the same
way as for Green-function renormalization of wave-like excitations [10] and transport [11].

In this work, a rigorous analysis of the properties of the structure factor of generic self-
affine sets is developed by using the theory of iterated function systems with probability
(IFSP) [12, 13], and by applying the definition of the associated Markov operator. In this
framework, the structure factor can be regarded as the Fourier transform of the unique
invariant measure associated with the IFSP. As a consequence, the results obtained are
directly applicable to any kind of multifractal distribution generated by means of affine
maps. In particular, for a large class of IFSP labelled unimodular (see section 2 for the
definition), a closed-form expression is derived for the structure factor.

The approach followed throughout this paper in order to obtain a functional equation
for the structure factor is conceptually analogous to the analysis developed by Bessis and
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Italy. E-mail address: max@giona2.ing.uniroma1.it
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Demko [14], Abendaet al [15], Abenda and Turchetti [16], Forte and Vrscay [17] to derive
a recursive equation for the moment hierarchy associated with the invariant measure of an
IFSP.

The paper is organized as follows. In section 2 the fundamental definitions and results of
the theory of IFSP are briefly reviewed as they are used throughout the article. A functional
recursion for the structure factor of affine sets (affine IFSP) is then derived and a closed-
form expression for unimodular sets is obtained in terms of a convergent infinite product.
The scaling properties of the structure factor and its differentiability as a function of its
argument and of the probability parameters characterizing the invariant measure are analysed
and some examples are discussed. Section 6 analyses the Laplace transforms and presents
some mathematical properties of the convolution of multifractal measures. Section 7 briefly
discusses some physical implications of the theory in optics and in the characterization of
heterogeneous materials (adsorption, relaxation). Finally, section 8 addresses the solution
of boundary-value problems in the presence of singular non-atomic distributions†.

2. Iterated function systems with probability

This section briefly reviews the basic definitions in the theory of iterated function systems.
For further details see [18, 12, 13].

Let Sw = {wh(x)}Nh=1 be a system of contraction maps on a metric space(X, d). The
base spaceX is a compact subspace ofRn and d a distance function defined on it. The
systemSw is called an iterated function system (IFS).

Following Hutchinson [19], a setC is said to befractal if there exists an IFSSw such
that

C =
N⋃
h=1

wh(C). (1)

If all wh are affine, i.e.

wh(x) = Ahx+ bh k = 1, . . . , N (2)

Ah being n × n matrices andbh being n-dimensional vectors, the setC, defined by the
Hutchinson relation, equation (1), is said to be self-affine. In particular, if allwh reduce to
similitudes with scaling factorsah, (0< ah < 1), C is said to be self-similar.

We shall add another definition for further use. An IFS, and its limit setC, are said to
be unimodular if all the matricesAh are equal, i.e. if all the mapswh are characterized by
a unique matrixA (modulus of the transformations) with different translation vectors.

Let 5 = {ph}Nh=1 be a system of probability weights,ph > 0,
∑N

h=1ph = 1. The pair
{Sw,5} = {wh, ph}Nh=1 is defined as an IFSP.

In the set of probability measuresM(X) on theσ -algebra of Borel subsets ofX, the
Markov operatorM :M(X)→M(X) associated with the IFSP{wh, ph}Nh=1 is defined by
the equation

M[µ] =
N∑
h=1

phµ ◦w−1
h (3)

where ◦ indicates the composition operator. The space(M, dH ), equipped with the
Hutchinson metricsdH [18], is a complete metric space and the Markov operator turns

† A probabilistic densityρ(x) is said to be atomic if it is formed by a countable superposition of impulses, i.e.
ρ(x) =∑∞h=1 πhδ(x − xh),

∑∞
h=1 πh = 1.
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out to be a contraction in it. Consequently, a unique invariant measureµ∗ exists of the
IFSP, which is a fixed point of the Markov operator

M[µ∗] = µ∗. (4)

Let µ be a probability measure,ν = M[µ], and f : X → C a generic continuous
function attaining complex values. Then,∫

X

f (x) dν (x) =
∫
X

f (x) d(M[µ])(x) =
N∑
h=1

ph

∫
X

f ◦wh(x) dµ (x). (5)

In particular, if the probability measureµ in equation (5) is the invariant measureµ∗,
thenν = M[µ∗] = µ∗, and equation (5) reduces to∫

X

f (x) dµ∗ (x) =
∫
C
f (x) dµ∗ (x) =

N∑
h=1

ph

∫
C
f ◦wh(x) dµ∗ (x). (6)

If the invariant measureµ∗ coincides with a probabilistic Hausdorff measure ofC, we
shall agree to callµ∗ uniform. For self-similar non-overlapping (also called just-touching)
IFSP [18], for which each matrixAh is characterized by a scaling factorah, this occurs if
ph = (ah)dH , h = 1, . . . , N , wheredH is the Hausdorff dimension,

∑N
h=1(ah)

dH = 1 [20].
IFSP provides the simplest way to generate fractal setsC, and multifractal measuresµ∗.

It is therefore convenient to adopt the following definition of the structure factorS(k) of
the setC on which the measure (distribution function)µ∗ is defined:

S(k) =
∫
C

exp(i〈k,x〉) dµ∗ (x) (7)

where i is the imaginary unit,k ∈ Rn and 〈·, ·〉 indicates the inner product. Definition (7)
can be regarded as the Fourier–Stieltjes transform associated withµ∗, whose support isC.

Alternatively, in the case of one-dimensional structures, which can be defined without
loss of generality onC ⊆ [0, 1], the moment-generating functionG(s) of µ∗ can be defined
as

G(s) =
∫
C

exp(−sx) dµ∗ (x) (8)

wheres is a complex variable andx a scalar variable. Equation (8) can be regarded as the
Laplace–Stieltjes transform ofµ∗, as discussed in section 6.

3. Structure factor

Let us apply equation (6) to the exponential kernelf (x) = exp(i〈k,x〉) which defines the
structure factor† S(k)

S(k) =
∫
C

exp(i〈k,x〉) dµ∗ (x)

=
N∑
h=1

ph

∫
C

exp(i〈k,Ahx+ bh〉) dµ∗ (x)

=
N∑
h=1

ph exp(i〈k, bh〉)
∫
C

exp(i〈At
hk,x〉) dµ∗ (x) (9)

† Although other, slighlty different definitions for the structure factor may be assumed, equation (9) is analogous
to the definition given in [9, 2].



4296 M Giona

whereAt
h is the transpose ofAh. Therefore,

S(k) =
N∑
h=1

ph exp(i〈k, bh〉)S(At
hk) = F [S(k)]. (10)

Equation (10) is the functional equation for the structure factor. It is important to observe
that equation (10) is also the spectral representation of equation (3) for the Markov operator
of affine IFSP.

In the case of unimodular structures, equation (10) reduces to

S(k) =
[ N∑
h=1

ph exp(i〈k, bh〉)
]
S(Atk). (11)

The closure condition, fork = 0, is of course

S(0) = 1. (12)

Let us consider the functionalF defined in the space of complex bounded functions
B(Rn), equipped with the uniform metricsd∞,

d∞(S1, S2) = sup
k

‖S1(k)− S2(k)‖ S1, S2 ∈ B(Rn) (13)

where‖ · ‖ indicates the modulus of a complex number. IfS1(k) belongs toB(Rn), then
S2(k) = F [S1(k)] belongs toB(Rn). Moreover, ifS1, S2 ∈ B(Rn), then

d∞(F [S2],F [S1]) = sup
k

∥∥∥∥ N∑
h=1

ph exp(i〈k,x〉)[S2(At
hk)− S1(At

hk)]

∥∥∥∥ 6 d∞(S2, S1). (14)

The functionalF defined by equation (10) is not a contraction, due to its behaviour for
k = 0. Nevertheless, its iterativesSn+1 = F [Sn] converge uniformly in any bounded
n-dimensional interval−Kmax6 ki 6 Kmax, i = 1, . . . , n.

Let us consider the particular case of unimodular IFSP, equation (11), and the sequence
of functions

Sn+1(k) =
[ N∑
h=1

ph exp(i〈k, bh〉)
]
Sn(Atk) S0(k) = 1. (15)

The initial functionS0 = 1 of this iterative scheme has been chosen in order to satisfy the
closure condition, equation (12). It should be noted, however, that any bounded function
f (k) with f (0) = 1 could equally well have been chosen as the starting point of this
iteration. The limit functionS∞(k) associated with the iterative recursion equation (15) is

S∞(k) =
∞∏
n=0

[ N∑
h=1

ph exp(i〈(At )nk, bh〉)
]
. (16)

It is a straightforward matter to check that the functionS∞(k) defined by equation (16)
satisfies the functional equation (11) and the closure condition (12). We may therefore
conclude that equation (16) is the closed-form expression for the structure factor of
unimodular IFSP.

The results obtained in this section are summarized by the following proposition.

Proposition 1.The static structure factor associated with unimodular affine setsC generated
by means of the IFSP{Ax+ bh, ph}Nh=1 is given by equation (16).
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Moreover, starting fromS0(k) = 1, the iterativesSn(k) of the recursion relation
equation (15),

Sn(k) =
n∏
j=0

[ N∑
h=1

ph exp(i〈(At )jk, bh〉)
]
. (17)

converge uniformly in any bounded set ofk.

The latter statement provides a simple way to computeS(k) for unimodular IFSP within
arbitrary limits of accuracy.

It is interesting to observe that Zygmund [21] studied the Fourier-Stieltjes coefficients in
the particular case of one-dimensional Cantor sets by following another approach based on
identifying the structure of the set at iterationn and then performing the limit forn→∞.
The class of Cantor sets considered by Zygmund (see [21, p 195]) is defined on [0, 2π ], and
is generated by means of the two-map IFSP,w1(x) = ax, w2(x) = ax + 2π(1− a), with
p1 = p2 = 1

2, and therefore is unimodular. In particular, Zygmund considered the Fourier–

Stieltjes coefficientscn = (2π)−1
∫ 2π

0 exp(−inx) dµ∗ (x). By applying equation (16) to this
IFSP, it follows that

cn = 1

2π

∞∏
h=0

[
1+ exp(−i2πnah(1− a))

2

]

= 1

2π

∞∏
h=0

exp(−inπah(1− a))
∞∏
h=0

cos(nπah(1− a))

= (−1)n

2π

∞∏
h=0

cos(nπah(1− a)) (18)

which is exactly the expression for the Fourier–Stieltjes coefficients obtained by Zygmund.
Let us now consider equation (10) in the case of one-dimensional IFSP,wh(x) =

ahx + bh. The moment hierarchy{mh} associated withµ∗ is given by

mn =
∫
C
xn dµ∗ (x) = (i)−n dnS(k)

dkn

∣∣∣∣
k=0

. (19)

By applying equation (10) it follows that

mn = (i)−n
N∑
h=1

ph
dn

dkn
[exp(ikbh)S(ahk)]k=0

= (i)−n
N∑
h=1

ph

n∑
j=0

(
n

j

)
(i)n−j bn−jh a

j

h

dj S(z)

dzj

∣∣∣∣
z=0

=
N∑
h=1

ph

n∑
j=0

(
n

j

)
b
n−j
h a

j

hmj (20)

from which the recursion scheme for the moment hierarchy reported in [14, 17] follows:[
1−

N∑
h=1

pha
n
h

]
mn =

N∑
h=1

ph

n−1∑
j=0

(
n

j

)
b
n−j
h a

j

hmj . (21)

A similar result can be obtained in higher dimensions by applying equation (10) in matrix
form.
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4. Scaling properties and differentiability

In this section we analyse the differentiability and scaling properties of the structure factor.
In order to keep the notation as simple as possible, one-dimensional IFSP are considered.

A simple but important property of the structure factor of fractal sets possessing uniform
or multifractal measures is its differentiability with respect to the argumentk. Indeed, it is
easy to see that the derivative ofS(k) exists for allk and is given by

dS(k)

dk
= i

∫
C
x exp(ikx) dµ∗ (x) = iD(k). (22)

The functional equation forD(k) in the case of unimodular IFSP can be derived by applying
equation (6) to the functionf (x) = x exp(ikx),

D(k) = a
N∑
h=1

ph exp(ikbh)D(ak)+
N∑
h=1

phbh exp(ikbh)S(ak). (23)

Instead of solving the functional equation (22) directly, its solution can be obtained by
observing that the logarithm ofS(k) is given by

logS(k) =
∞∑
n=0

log

[ N∑
h=1

ph exp(ianbhk)

]
. (24)

Therefore,

dS(k)

dk
= S(k)d logS(k)

dk
= iS(k)

∞∑
n=0

Pn(k)

Tn(k)
an (25)

where

Pn(k) =
N∑
h=1

phbh exp(ianbhk) Tn(k) =
N∑
h=1

ph exp(ianbhk). (26)

The series on the right-hand side of equation (26) is convergent sincea < 1 and
‖Pn(k)/Tn(k)‖ 6

∑N
h=1ph|bh|.

For example, let us consider the Cantor middle-third set. The IFSP generating this
structure with a uniform invariant measure is unimodular and given by the two maps
w1(x) = x/3, w2(x) = x/3 + 2

3 with p1 = p2 = 1
2. Figure 1(a) shows the modulus

I (k) = ‖S(k)‖ of the structure factor for this set and figure 1(b) shows the derivative of
the real part in a given interval ofk.

Let us now consider the scaling behaviour of the moment-generating function of one-
dimensional affine IFSP. With no loss of generality, letC ⊆ [0, 1]. Moreover, let us order
the mapswh for increasing values ofbh, i.e. bh < bh+1, and let us assumeb1 = 0.

The moment-generating functionG(s) is defined in the right half plane of the complex
variables, Re[s] > 0 and satisfies a functional equation analogous to equation (10),

G(s) =
N∑
h=1

ph exp(−sbh)G(ahs). (27)

Figure 2 shows the behaviour ofG(s) versuss for the two-map IFSP,w1(x) = x/2 with
probabilityp1 = p, w2(x) = x/2+ 1

2 with probabilityp2 = 1− p. This IFSP generates a
multifractal binomial measure on the unit interval whose properties depend onp. A power-
law behaviour ofG(s) can be observed for larges with an exponentβ which depends on
p,

G(s) = As−β + o(s−β). (28)
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Figure 1. (a) I (k) = ‖S(k)‖ for the Cantor middle-third set; (b) Snapshot of the derivative of
the real part ofS(k).

Figure 2. Moment-generating functionG(s) for a binomial measure on the unit interval
generated by a two-map similar IFSP for different values of the probabilityp1 = p. (a)
p = 0.9; (b) p = 0.7; (c) p = 0.5 for which G(s) = (1− exp(−s))/s; (d) p = 0.3; (e)
p = 0.1.
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By substituting equation (28) into equation (27) we have asymptotically:

As−β = Ap1a
−β
1 s−β + o(s−β exp(−sb2)). (29)

Therefore, fors →∞, 1= p1a
−β
1 , which yields

β = logp1

loga1
. (30)

In the case of the structure factor, the scaling exponent may be different from equation (30).
In order to highlight this point, let us consider a two-map IFSP,w1(x) = ax with probability
p, w2(x) = ax + (1− a) with probability 1− p. Application of equation (16) gives the
following expression for the modulusI (k;p) = ‖S(k;p)‖ for a valuep of the probability
weight,

I (k;p) =
∞∏
n=0

[p2+ (1− p)2+ 2p(1− p) cos(k(1− a)an)]1/2. (31)

Therefore,

I (k;p) = I (k; 1− p) (32)

i.e. the intensityI (k;p) is symmetrical with respect top aroundp = 0.5. It is thus easy
to see that equation (30) does not apply. The reason for this different scaling behaviour is
that while exp(−sbh) = o(s−β) for bh > 0, this is no longer true for the oscillating term
exp(ikbh). In the case of one-dimensional unimodular IFSP, the following scaling behaviour
has been observed forI (k):

I (k) ∼ k−βk βk = logpmax

loga
(33)

wherepmax= maxh=1,...,N {ph}.
The situation is more complex in higher dimensions, for which anisotropies may appear

in the scaling behaviour of the structure factor in all cases where the matrixA is not a
similitude but possesses different scaling factors along the different Cartesian coordinates
(self-affine structures).

5. Examples

This section discusses some examples related to two-dimensional structures. Let us consider
the case of a unimodular IFSP in the plane. The matrixA is assumed to be the result of a
similar contraction by a factor ofa and of a rotation with angleθ :

A = a
(

cosθ − sinθ
sinθ cosθ

)
. (34)

Therefore,

(At )n = an
(

cos(nθ) sin(nθ)
− sin(nθ) cos(nθ)

)
. (35)

Let us indicate withki , and bh,i the ith component of the vectork, bh,i . Equation (16)
reduces to

S(k) =
∞∏
n=0

[ N∑
h=1

ph exp(ianϕh(n,k))

]
(36)
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where

ϕh(n,k) = cos(nθ)[k1bh,1+ k2bh,2] + sin(nθ)[k2bh,1− k1bh,2]. (37)

For example, figure 3 shows the contour plot of the intensityI (k) = ‖S(k)‖ for the
Sierpinski carpet and figure 4 the moment-generating functionG(s) = G(s1, s2) as a
function of s1 for different orientations, i.e. along the liness2 = αs1. The IFSP generating
the Sierpinski carpet with a uniform measure is unimodular and represented by eight maps
with pi = 1

8 (i = 1, . . . ,8), a = 1
3 and θ = 0 (in equation (34)). The translation vectors

are b1 = (0, 0)t , b2 = (0, 1
3)
t , b3 = (0, 2

3)
t , b4 = ( 1

3, 0)t , b5 = ( 1
3,

2
3)
t , b6 = ( 2

3, 0)t ,
b7 = ( 2

3,
1
3)
t , b8 = ( 2

3,
2
3)
t . As can be observed, fors2 = 0, i.e. along the two

principal directions of the Cartesian reference system, the scaling exponent of the moment-
generating function is given byβ = log( 3

8)/ log( 1
3), while for all the other orientations

β = log 8/ log 3 = dH . The apparently anomalous behaviour along the Cartesian axes
can be understood by means of equation (30). Indeed, fors2 = 0, G(s1, 0) corresponds
to the moment-generating function associated with the projected measureµ1(x1), with
dµ∗1 (x1) =

∫∞
x2=−∞ dµ∗ (x) which corresponds to a three-map one-dimensional IFSP with

Figure 3. Contour plot of I (k) = I (k1, k2) for ki (i = 1, 2) ranging in the interval
−2006 ki 6 200 in the case of the Sierpinski carpet.
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Figure 4. Moment-generating functionG(s) versuss1 along different orientations, i.e. for
s2 = αs1 with α constant. (a) α = 0; (b) α = 1; (c) α = 5; (d)G ∼ s−β1 with β = log( 8

3)/ log 3;

(e) G ∼ s−dH1 .

on w1(x) = x/3, p1 = 3
8, w2(x) = x/3+ 1

3, p2 = 2
8, w3(x) = x/3+ 2

3, p3 = 3
8. The

exponentβ is therefore given by equation (30) withp1 = 3
8, a1 = a = 1

3.
As a further example, figure 5 shows the contour plot ofI (k) for the Vicsek fractal

(studied by Allain and Cloitre by applying renormalization). This set is generated by means
of a five-map unimodular IFSP withA given by equation (34) witha = 1

3, θ = 0, and with
b1 = ( 1

3, 0)t , b2 = (0, 1
3)
t , b3 = ( 1

3,
1
3)
t , b4 = ( 2

3,
1
3)
t , b5 = ( 1

3,
2
3)
t . A uniform invariant

measure is obtained forpi = 1
5 (i = 1, . . . ,5).

6. Laplace transforms of multifractal measures

A direct application of the theory presented above is related to the Laplace–Stieltjes
transform since, as a consequence of proposition 1, it is possible to obtain a closed-form
expression for the Laplace transform (moment-generating function) of multifractal measures.
To this end, let us consider one-dimensional unimodular IFSP such thatC ⊆ [0, 1], and let
us define the Laplace–Stieltjes transform associated withµ∗, L[dµ∗], as

L[dµ∗ (x)] =
∫
C

exp(−sx) dµ∗ (x). (38)

Taking into account the fact that the moment-generating function equation (8) can be
viewed as the Laplace transformL[dµ∗], we have the following proposition.

Proposition 2.Let µ∗ be the invariant measure associated with a one-dimensional
unimodular IFSP{wh, ph}Nh=1, wh = ax + bh. Then

L[dµ∗(x)] =
∞∏
n=0

[ N∑
h=1

ph exp(−anbhs)
]
. (39)

In particular, in the case of the unit interval equipped with a binomial measure, i.e.
w1(x) = x/2 with probability p, w2(x) = x/2 + 1

2 with probability 1− p, it follows
that

L[dµ∗(x)] =
∞∏
n=0

[
p + (1− p) exp(−s/2n+1)

]
(40)
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Figure 5. Contour plot of I (k) = I (k1, k2) for ki (i = 1, 2) ranging in the interval
−2006 ki 6 200 in the case of the Vicsek fractal.

and for Cantor sets generated by a two-map IFSP,w1(x) = ax with probability p,
w2(x) = ax + (1− a) with probability 1− p (a < 1

2):

L[dµ∗ (x)] =
∞∏
n=0

[p + (1− p) exp(−(1− a)ans)]. (41)

The uniform convergency properties for then-order approximations discussed in section
3, equation (17), hold for the infinite products defined in equations (39)–(41).

As a consequence of equations (39) and (40), the following identities (obtained by
applying these equations to a uniform measure on the unit interval) hold:

1− exp(−s)
s

=
∞∏
n=0

[ 1
2 + 1

2 exp(−s/2n+1)] (42)

which is an application of equation (40) withp = 1
2 and

1− exp(−s)
s

=
∞∏
n=0

[
1

N

1− exp(−s/Nn)

1− exp(−s/Nn+1)

]
for N = 1, 2, . . . (43)
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which is an application of equation (39) withph = 1/N andbh = (h− 1)/N .
Another interesting property is that the moment-generating functionG(s), equation (8),

is differentiable with respect to the probability weightsph.
As an example, let us take the moment-generating function of binomial measures on

the unit interval and writeG(s) = G(s;p) to indicate explicitly the dependence of the
moment-generating function on the parameterp. It can be shown that the derivative of
G(s;p) with respect top exists and is given by

∂G(s;p)
∂p

=
∞∏
n=0

[p + (1− p) exp(−s/2n+1)]
∞∑
h=0

1− exp(−s/2h+1)

p + (1− p) exp(−s/2h+1)
. (44)

The results derived for Laplace–Stieltjes transforms of multifractal measures may be
applied to all the problems involving convolutions.

A typical physical example arises in the study of the vibrational properties of product
lattices,G = G1⊗G2 obtained as the Cartesian product of finitely ramified fractals [22]. The
density of states associated with scalar vibrations of the product latticeG is the convolution
of the densities of states ofG1 and G2. For fractal structures, the density of states gives
rise to singular non-atomic measures, as discussed extensively by Domanyet al [23]. It is
important to observe that product lattices play an important role in the dynamic theory of
fractal structures as they represent an example of fractal lattices whose spectral dimension
may exceed 2 [24]. For finitely ramified fractals, such as the Sierpinski gasket, Vicsek
fractal etc, the spectral dimension is always bounded by 2.

Moreover, product lattices are in general infinitely ramified, and therefore represent
a more realistic model of real topologically complex porous and capillary networks. A
detailed discussion of the physical implications of product lattices has been developed by
Schwalm and Schwalm [22]. Hilfer and Blumen [25] have studied the density of states of
the Cartesian product of a Sierpinski gasket with a one-dimensional line. An application of
the theory presented in [22] to random structures was discussed by Dominguez and Wiecko
[26].

Apart from the spectral properties of fractal structures, convolutions enter into the
solution of linear Volterra integral equations of classical mathematical physics [27].

Let us study some mathematical properties of the convolution of (multifractal or not)
measures defined on the unit interval or on Cantor dusts.

Let µ∗1 and µ∗2 be the invariant measures associated with two unimodular IFSP
{a(1)x + b(1)h , p(1)h }N1

h=1, {a(2)x + b(2)h , p(2)h }N2
h=1. The convolution ofµ∗1 and µ∗2 generates

a new measureµ defined by the relation

dµ (x) =
∫

dµ∗1 (z) dµ∗2 (x − z). (45)

In terms of Laplace transforms, from equation (45) it obviously followsG(s) =∫
exp(−sx) dµ (x) = G1(s)G2(s). By applying equation (39) toG(s) one obtains

G(s) =
∞∏
n=0

[ N1∑
h=1

p
(1)
h exp(−(a(1))nb(1)h s)

][ N2∑
k=1

p
(2)
k exp(−(a(2))nb(2)k s)

]
. (46)

In the casea1 = a2 = a, equation (46) simplifies to

G(s) =
∞∏
n=0

[ N1∑
h=1

N2∑
k=1

p
(1)
h p

(2)
k exp(−an(b(1)h + b(2)k )s)

]
. (47)

By comparing equation (47) with equation (39), it can be readily seen that equation (47)
corresponds to the Laplace transform of the invariant measure of aN1×N2-map unimodular
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IFSP characterized by the transformationswh,k(x) = ax + b(1)h + b(2)k (h = 1, . . . , N1,
k = 1, . . . , N2) equipped with the probability weightsph,k = p(1)h p(2)k .

This result allows us to identify completely the resulting measureµ, and can be
summarized by means of the following proposition.

Proposition 3.The convolution of two invariant meaures associated with self-similar
unimodular IFSP possessing the same scaling factora, is the invariant measure of the
unimodular IFSP withwh,k = ax + bh,k, h = 1, . . . , N1, k = 1, . . . , N2, wherebh,k is
the sum of the translation termsb(1)h + b(2)k and the probability weights are the product of
probabilitiesph,k = p(1)1 p

(2)
2 of the two IFSP.

Let us make some applications of this result. Let us consider the two-map IFSP
w1(x) = x/2, w2(x) = x/2+ 1

2 with p1 = p2 = 1
2, whose invariant measure is uniform,

ρ∗(x) = 1 on the unit interval.
The n-order convolution ofρ∗(x) with itself generates a regular densityρ(n,∗)(x) on

[0, n+ 1], whose restriction to the unit interval is given by

ρ(n,∗)(x) = xn

n!
x ∈ [0, 1]. (48)

By applying the proposition stated above, it follows that the IFSP generatingρ(n,∗)(x)
is given by the(n+ 2)-map IFSP with

w
(n)
h (x) =

x + h
2

p
(n)
h =

(
n+ 1
h

)
h = 0, . . . , n+ 1. (49)

The set of IFSP given by equation (49) may be defined as thepolynomial IFSP basis on
the interval [0, 1] since, due to equation (48), it generates power-law invariant densities.
This example indicates that regular non-uniform distributions of polynomial shape can be
obtained by means of simple similar overlapping IFSP.

As a further example let us consider the convolution of two invariant measures associated
with the two-map IFSP generating the Cantor middle-third set,w1(x) = x/3 with probability
p1, w2(x) = x/3+ 2

3 with probabilityp2. The convolution gives rise to a measure defined
on the interval [0, 2] and associated with the three-map IFSPwc1(x) = x/3 with probability
p2

1, wc2(x) = x/3+ 2
3 with probability 2p1p2, wc3(x) = x/3+ 4

3 with probability p2
2. The

generalized dimensionsD(q) associated with the corresponding invariant measure can be
obtained in closed form since the IFSP is just-touching,

D(q) = log(p2q
1 + (2p1p2)

q + p2q
2 )

(1− q) log 3
. (50)

This example indicates that multifractal measures may arise from the convolution of
two non-multifractal measures (as forp1 = p2 = 1

2 in the previous example) defined on
Cantor dust supports.

7. Physical applications of the theory

This section furnishes an outline of some physical applications of the integral transform
theory with particular reference to open problems and current lines of research.
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7.1. Optical applications

To quote Lohmann [28]: ‘the Fourier transform is of such central significance to physical
optics that everything that is somehow related to Fourier mathematics is likely to be important
in the realm of optics’.

The theory of Fourier transforms does in fact find a direct application in the theory of
scattering from fractal structures. The results given in section 5 for model fractal structures
agree with the experiments performed by Reed [9].

The integral transform theory may prove a particularly useful way of attaining a rigorous
mathematical analysis of the physical theories for scattering from pore fractal structures
developed by Bale and Schmidt [8]. The scaling theory of Bale and Schmidt [8] is still
the subject of discussion and investigation, and the application of the methods discussed
throughout this article to some model structures of pore fractals may help towards a better
understanding of this issue.

In the field of optics, the analysis of the Fourier–Stieltjes transform can be applied to
other linear integral transforms of physical interest, and in particular to fractional Fourier
transforms [28, 29] and wavelet transforms [30, 31].

To simplify the notation, let us consider a one-dimensional example. In general, wavelet
transforms may be defined as

9(k) =
∫
C
ψ(x;k) dµ∗ (x) (51)

wherek is a set of parameters, and the wavelet functionψ is generally supposed to be of
zero mean for the wavelet transform to be invertible.

Wavelet transforms can be regarded as a mathematical microscope highlighting the local
properties of the object by a suitable choice of the waveletψ . Wavelet analysis is currently
applied to study the structural and textural features of physical fractals: diffusion-limited
aggregates, depositional aggregates, etc [32].

Let us consider a typical wavelet, such as the complex Morlet wavelet [30], defined by
the kernelψ(x; k, λ) = exp(ikx − λx2).

By applying equation (6) to this wavelet transform in the case of linear IFSP, it follows
that

9(k, λ) =
N∑
h=1

ph exp(ikbh − λx2)9(kah + 2iλahbh, λah). (52)

A closed-form expression for9(k, λ) has yet to be found, and the recursive relation
equation (52) should be approached in a numerical way. This situation is analogous to
the case of the Fourier–Stieltjes transform or of the Laplace–Stieltjes transform for non-
unimodular IFSP. It is therefore useful to examine briefly the computational issues associated
with the recursive relations such as equation (52), by considering, for example the case of
the Fourier–Stieltjes transform.

In those cases for which a closed-form expression can be found (unimodular IFSP), the
analysis developed in sections 3 and 4 yields arbitrarily accurate results (and the accuracy
can be easily controlled since the approximants, equation (17) are uniformly convergent).
Consequently the application of equation (17) is both conceptually and numerically superior
to any kind of numerical algorithm (such as FFT).

In all other cases, the numerical algorithm consists of the iteration of a recursive
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functional equation, which for the Fourier–Stieltjes transform takes the form

Sn+1(k) =
N∑
h=1

ph exp(i〈k, bh〉)Sn(At
hk) S0(k) = 1 (53)

and analogously for the wavelet transform by applying equation (52) to{9n(k, λ)} since
9(0, 0) = 1.

The implementation of equation (53) can be performed by means of a recursive algorithm
with memory in which the values ofSn(k) at the preceding iterations are stored in an
associative arrays(n,k), which is an array labelled by means of real numbers [33] (see
also [34]).

A comparison with classical routines such as FFT reveals the basic differences between
the two methods. In FFT, data are sampled and the accuracy depends on the sampling
interval. The recursive algorithm equation (53) is independent of sampling, and corresponds
to a renormalization procedure. Indeed, thenth iteration of the algorithm corresponds
approximately to theNn sampling point in the FFT routine. Moreover, since the sequence
{Sn+1(k)} is uniformly convergent, numerical accuracy can be easily controlled.

The implementation of equation (53) requires, however, a significant data segment for
the storing of the associative arrays(n,k). The memory occupied can be reduced by
introducing an approximation, consisting of assuming thats(n,k) = s(n,k′) for k′ 6 k+ε,
whereε (usuallyε ' 10−8–10−12) controls the rounding-off error.

The computer time needed to implement equation (53) depends on the nature of the
entries of the matricesAt

h. If the entries ofAt
h are rational numbers, the algorithm is very

efficient and the data storage reduces drastically.
Preliminary analyses show that the algorithm is slower than FFT (but not significantly

so) for smalln, but is definitely more convenient for largen, i.e. for accurate spectral
analysis and at large wavelengths. To give an example, the computation of the Fourier
spectrum overM = 104 data points in the rangek ∈ (0, 105) for an IFSP with 4–8 maps
at iterationn = 100 (corresponding roughly to 4100–8100 sampling points, i.e. beyond the
applicability of any FFT algorithm based on sampling), with a rounding-off threshold of
ε = 10−10, takes less than 10 min of CPU time on a standard IBM RISC workstation. The
algorithm is also particularly suitable for parallel implementation.

Another interesting application of integral transform theory is related to the
determination of thermodynamic averages in crystal models. Bessis and Demko [14] showed
that the invariant measures of IFSP can be used to approximate the vibrational density
of states of face-centred cubic crystal with nearest-neighbouring central force constants.
This problem has been considered by Wheeler and Gordon [35] with reference to the
computation of the zero-point vibrational energy, defined asEo = ( 1

2)
∫ 1

0

√
x dµ∗ (x), where

dµ∗ (x) = ρ(x) dx, andρ(x) is the normalized vibrational density of states. Bessis and
Demko [14] reconstructed the density of states by means of a four-map affine IFSP by
matching the first nine moments of the measure. Integral transform theory provides a simple
way to compute the averages of continuous transcendental functions such asf (x) = √x,
sincef (x) can be expanded in Fourier series and the Fourier coefficients can be obtained
by applying the methods discussed in sections 3 and 4.

7.2. Characterization and dynamics of heterogeneous systems

Integral transform theory finds application also in the study of physical properties of
heterogeneous systems. Two examples are briefly addressed.
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The first case refers to the study of adsorption isotherms on heterogeneous solids.
In the chemical physics of surfaces, heterogeneity is usually referred to those structures
(i.e. the overwhelming majority) which are characterized by a broad distributionµ∗(E)
of adsorption energiesE [36]. Broad distributions of adsorption energies arise from local
defects, dislocations, substitutional disorder, etc.

If θloc(P, T ;E) indicates the local adsorption isotherm corresponding to an adsorption
energy E (P is the pressure,T is the temperature), the global, and experimentally
measurable, adsorption isothermθ(P, T ) is given by

θ(P, T ) =
∫
C
θloc(P, T ;E) dµ∗ (E) (54)

whereC is the set of admissible adsorption energies.
It is important to observe thatµ∗(E) is not a measurable quantity, and can be obtained

in an indirect way by inverting equation (54), once an expression for the local isotherm is
chosen. Smooth and differentiable distributions of adsorption energies are usually considered
[36]. From the theoretical point of view, however, it is interesting to also analyse the
influence of singular distributions, which may be a reasonable assumption for highly singular
adsorbents.

As a local adsorption isotherm, a Langmuir expression may be chosen [37, 38]

θloc(P, T ;E) = KP exp(E/RT )

1+KP exp(E/RT )
(55)

whereR is the gas constant andK corresponds to the low-pressure Henry constant. By
inserting equation (55) into equation (54) it follows that

θ(P, T ) = α
∫
C

dµ∗ (E)
exp(−βE)+ α = αh(β, 1, α) (56)

whereα = KP , β = 1/RT and the functionh(β, λ, α) is given by

h(β, λ, α) =
∫
C

dµ∗(E)
λ exp(−βE)+ α . (57)

In the case of singular measures generated by means of linear IFSP, it readily follows that

h(β, λ, α) =
N∑
h=1

phh(βah, λexp(−βbh), α) (58)

and the analysis discussed throughout this article applies also to this case.
Another example is given by the study of relaxation properties of complex systems.

In many physical phenomenologies, such as stress relaxation in polymers and suspensions,
dielectric relaxation, and thermoremnant magnetization in spin glasses, anomalous relaxation
properties have been observed [39]. Ifφ(t) indicates the relaxation function (such as
polarization current in dielectric relaxation), a basic approach is to considerφ(t) as the
superposition of a large number of exponentially decaying modes exp(−kt), wheret is time
and k is the relaxation rate, i.e. the reciprocal of the characteristic modal relaxation time,
so that

φ(t) =
∫
C

exp(−kt) dµ∗ (k) (59)

where µ∗(k) is the distribution of relaxation times. Equation (59) corresponds to the
Laplace–Stieltjes transform ofµ∗(k). In the study of the relaxation properties of fractals
and of complex structures, the hierarchical distribution of relaxation times may be taken
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into consideration [40]. These distributions may be described by means of singular non-
atomic measures. In the presence of such distributions, it follows from equations (59) and
(30) thatφ(t) ∼ t−β , i.e. the relaxation function is characterized by a power-law decay.
Power-law relaxations have been experimentally observed in dielectrics (see [41–45] and
references therein) and in viscoelastic materials (see [46, 47] and references therein), and
have been theoretically interpreted by means of constitutive equations of Riemann–Liouville
type [48, 49].

There are in fact some analogies between transport phenomena in the presence
of multifractal distributions of transport and rate coefficients, and constitutive
(flux/concentration gradient) equations of Riemann–Liouville type, as recently observed in
[50]. The study of the analogies between distributed models characterized by multifractal
properties in transport and rate coefficients and mean-field models with Riemann–Liouville
kernels is needed to be taken further since it is of value in the study of dynamic phenomena
in complex and fractal systems in order to formulate theoretical models and approximate
mean-field equations interpreting transport, reaction and relaxation phenomena.

8. PDE with singular boundary conditions

The theory of integral transforms developed above can be applied to solve basic linear
equations of mathematical physics in the presence of singular non-atomic boundary
conditions.

This section develops as a case study of the solution of the Dirichlet problem for
the Laplace equation on the circle. This is the simplest, non-trivial problem for elliptic
equations, which finds applications in the theory of steady-state transport phenomena, e.g.
heat transfer [51].

Let us consider the Laplace equation,

∇2c = 0 (60)

inside a circle of radiusR, i.e. forr < R, θ ∈ [0, 2π ] equipped with the boundary conditions
of Dirichlet type

c(R, θ) = co(θ). (61)

The solution of this equation is referred to as the Poisson formula

c(r, θ) = 1

2π

∫ 2π

0
K(r, θ − ψ)co(ψ) dψ (62)

where the Poisson kernelK(r, θ − ψ) is given by [27]

K(r, θ − ψ) = 1− (r/R)2
1− 2(r/R) cos(θ)+ (r/R)2 = 1+ 2

∞∑
n=1

( r
R

)n
cos[n(θ − ψ)]. (63)

By changing the variables,θ = 2πy, ψ = 2πη (y, η ∈ [0, 1]), ξ = r/R, c̃0(y) = c0(2πy),
the solution of the Dirichlet problem reads as

c(ξ, y) =
∫ 1

0
c̃0(y) dy + 2

∞∑
n=1

ξn
∫ 1

0
c̃0(η) cos[2π(y − η)] dη. (64)

Let us consider the case wherec̃0(y) dy is proportional to the distribution of dµ∗ (y) on
[0, 1] associated with an IFSPC0 dµ (y) = c̃0(y) dy, whereC0 is a positive constant. From
equation (64) it follows that

c(ξ, y) = C0

[
1+ 2

∞∑
n=1

ξn(Re[S(2πn)] cos(2πy)+ Im[S(2πn)] sin(2πy))

]
(65)
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Figure 6. Behaviour ofc(ξ, y) versusy, equation (65) for different values ofξ (from bottom
up, ξ = 0.1, 0.5, 0.8, 0.9, 0.99). Thec(ξ, y)-profiles have been translated along the vertical
axis by a constant factor (i.e. the vertical scale is arbitrary) in order to achieve a better visual
representation.

Figure 7. σ 2(ξ) versusξ . The dots represent the data obtained from the solution of the Laplace
equation (65). The line isσ 2(ξ) = Aξ2, with A constant.

whereS(2πn), see equation (7), are the Fourier–Stieltjes coefficients ofµ∗.
Figure 6 shows the behaviour ofc(ξ, y) versus the angular coordinatey for different

values ofξ , whereµ∗ is the invariant measure associated with a three-map IFSPwh(x) =
ax + bh with a = 1

3, b1 = 0, b2 = 1
3, b3 = 2

3 for p1 = 0.2, p2 = 0.6, p3 = 0.2. As can be
expected, the solutionc(ξ, y) becomes rougher asξ increases up to the boundary. A measure
of the roughening is given by the mean square deviationσ 2(ξ) = ∫ 1

0 [c(ξ, y)− 〈c(ξ)〉]2 dy,

with 〈c(ξ)〉 = ∫ 1
0 c(ξ, y)dy. As can be expected from the Laplacian nature of the boundary-

value problem,σ 2(ξ) ∼ ξ2, as confirmed by the analysis of the data, figure 7.
Therefore, the simple case study developed in this section shows that the integral

transform theory can be applied to solve partial differential equations in the presence singular
non-atomic boundary conditions. Other examples can be worked out within the theoretical
framework of integral transform theory, since the solution of many other linear transport
and vibrational problems can be expressed in integral form through the introduction of the
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corresponding Green’s functions.

9. Concluding remarks

This paper analysed the properties of integral transforms of singular non-atomic measures
associated with linear IFSP. It has been shown that the Fourier–Stieltjes and Laplace–
Stieltjes transforms satisfy a functional relation, equations (10) and (27). For unimodular
IFSP, a closed-form expression for the integral transforms is obtained in terms of a
converging infinite product, equations (16) and (39). Alternatively, the transforms can be
evaluated by iterating a recursive scheme, equation (53), and the sequence of approximants
is uniformly convergent.

The results obtained enable us to attain a rigorous treatment of integral transforms of
singular non-atomic measures, such as multifractal distributions. This allows us to develop
a rigorous mathematical physics of distributed parameter systems possessing singular
measures.

It is also interesting to observe that equation (10) is the spectral representation of the
Markov operator associated with the invariant measure of affine IFSP. It encompasses the
entire structure of the moment hierarchy in a single equation. It is expected that this spectral
formulation may have some utility in solving the inverse problem of IFSP in connection
with signal and image processing and compression.

We have also discussed some physical applications of the theory focusing on optics
(scattering, wavelet analysis of complex fractal structures, computations of thermodynamic
averages over the density of states) and on the dynamics of heterogeneous systems
(adsorption, relaxation), associated with a hierarchical and singular distribution of adsorption
energies, relaxation times etc.

To conclude, another important application of the theory should be mentioned, namely
the time-series analysis of cascade processes. The results developed in this paper, and in
particular the study of Laplace transforms, can be further developed in order to achieve a
pointwise characterization of the scaling properties of the underlying cascade process. This
approach is particularly interesting in the analysis of experiments and computer simulations
of complex phenomena, the underlying dynamics of which can be regarded as a cascade
(multiplicative) process, as in the study of mixing (chaotic flows) and turbulence, or in the
analysis of dissipative dynamical systems for which the asymptotic behaviour is localized
on an invariant subset and the resulting measure displays singularities, as for the period-
doubling attractor [52].
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